Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual

Nonfiction, Science & Nature, Science, Physics, Astronomy
Cover of the book Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781466036161
Publisher: Progressive Management Publication: December 15, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781466036161
Publisher: Progressive Management
Publication: December 15, 2011
Imprint: Smashwords Edition
Language: English

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

More books from Progressive Management

Cover of the book Energy Development and Permitting in Alaska: Managing for the Future in a Rapidly Changing Arctic - Oil and Gas, Mining, Shipping and Fisheries, Global Warming and Climate Change by Progressive Management
Cover of the book A History of Innovation: U.S. Army Adaptation in War and Peace - M1 Garand Rifle, Radar, Benning Revolution, Air Observation Posts, Bazooka, Amphibian Tank, Airmobility, Artillery Speed Shifter by Progressive Management
Cover of the book Osama bin Laden’s Death: Implications and Considerations - Congressional Research Service Report by Progressive Management
Cover of the book They Served Here: Thirty-Three Maxwell Men - Maxwell Air Force Base, Claire Chennault, Clark Gable, Glenn Miller, Henry Hugh Shelton, Hoyt Vandenberg, Curtis LeMay by Progressive Management
Cover of the book 21st Century Nuclear Hydrogen Research and Development, Production of Hydrogen from Nuclear Energy for the Hydrogen Initiative, Feedstocks, High-Temperature Electrolysis (HTE), Fuel Cycle by Progressive Management
Cover of the book The Better Blitzkrieg: A Comparison of Tactical Airpower Use by Guderian and Patton, Luftwaffe, Panzer Campaign, Close Cooperation at the Meuse, German and Army Air Forces Airpower Doctrine by Progressive Management
Cover of the book Apollo and America's Moon Landing Program: NASA Engineers and the Age of Apollo - Stories of the Engineers Who Made the Moon Landing Possible (NASA SP-4104) by Progressive Management
Cover of the book The Eagle in the Desert: The Origins of the U.S. - Saudi Arabian Security Partnership - Search for Foreign Oil, World War II, Cold War, King Saud, Operation Hardsurface, Nuclear Iran, Radical Islamism by Progressive Management
Cover of the book Revision of Career Marksmanship Training Requirements for the United States Marine Corps: Annual Rifle Qualifications, Refocus Resources to Advanced Marksmanship, Score Keeping, Filling Quotas by Progressive Management
Cover of the book America's Conditional Advantage: Airpower, Counterinsurgency, and the Theory of John Warden - COIN, Airpower, French-Algerian War, Vietnam, Soviet Afghan War, Enemy as a System (EAS) by Progressive Management
Cover of the book Avoiding a Nuclear Catastrophe: WMD Weapons Threat from North Korea, Iran, Terrorists, Russia, China, Treaties, Role of Ballistic Missile Defense (BMD), Strengthening the Air Force Nuclear Enterprise by Progressive Management
Cover of the book Allied Participation in Operation Iraqi Freedom: Coalition of the Willing for the Iraq War 2003, Force Contributions by Nations, Challengers for Army Planners by Progressive Management
Cover of the book 21st Century Essential Guide to HUD Programs and Housing Grants – Volume Two, Major Programs, Housing for the Elderly (Section 202) and Disabled (Section 811), Homeless Assistance, Applications by Progressive Management
Cover of the book Solyndra and the Department of Energy Loan Guarantee Program: House Hearings on Stimulus Funding for Solar Energy Company by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Joint Surveillance Target Attack Radar System (Joint STARS) FM 34-25-1 (Value-Added Professional Format Series) by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy