Kinetic Simulations of Ion Transport in Fusion Devices

Nonfiction, Science & Nature, Science, Physics, Nuclear Physics, Mathematical Physics
Cover of the book Kinetic Simulations of Ion Transport in Fusion Devices by Andrés de Bustos Molina, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Andrés de Bustos Molina ISBN: 9783319004228
Publisher: Springer International Publishing Publication: August 13, 2013
Imprint: Springer Language: English
Author: Andrés de Bustos Molina
ISBN: 9783319004228
Publisher: Springer International Publishing
Publication: August 13, 2013
Imprint: Springer
Language: English

This thesis deals with the problem of ion confinement in thermonuclear fusion devices. It is a topic of general interest, as it helps to understand via numerical simulations the ion confinement properties in complex geometries, in order to predict their behavior and maximize the performance of future fusion reactors. The main work carried out in this thesis is the improvement and exploitation of an existing simulation code called ISDEP.  This code solves the so-called ion collisional transport in arbitrary plasma geometry, improving in this sense other existing codes. Additionally, it presents outstanding portability and scalability in distributed computing architectures, such as Grid or Volunteer Computing.
The main physical results can be divided into two blocks. First, the study of 3D ion transport in ITER is presented. ITER is the largest fusion reactor (under construction) and most of the simulations so far assume the axis-symmetry of the device. Unfortunately, this symmetry is only an approximation because of the discrete number of magnetic coils used. ISDEP has shown, using a simple model of the 3D magnetic field, how the ion confinement is affected by this symmetry breaking.
Secondly, ISDEP has been applied successfully to the study of fast ion dynamics in fusion plasmas. The fast ions, with energies much larger than the thermal energy, are a product of the device’s heating system. Thus, a numerical predictive tool can be used to improve the heating efficiency. ISDEP has been combined with the FAFNER2 code to study such ions in stellarator (TJ-II, LHD) and tokamak (ITER) geometries. It has also been validated by experimental results. In particular, comparisons with the CNPA diagnostic in the TJ-II stellarator are remarkable.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis deals with the problem of ion confinement in thermonuclear fusion devices. It is a topic of general interest, as it helps to understand via numerical simulations the ion confinement properties in complex geometries, in order to predict their behavior and maximize the performance of future fusion reactors. The main work carried out in this thesis is the improvement and exploitation of an existing simulation code called ISDEP.  This code solves the so-called ion collisional transport in arbitrary plasma geometry, improving in this sense other existing codes. Additionally, it presents outstanding portability and scalability in distributed computing architectures, such as Grid or Volunteer Computing.
The main physical results can be divided into two blocks. First, the study of 3D ion transport in ITER is presented. ITER is the largest fusion reactor (under construction) and most of the simulations so far assume the axis-symmetry of the device. Unfortunately, this symmetry is only an approximation because of the discrete number of magnetic coils used. ISDEP has shown, using a simple model of the 3D magnetic field, how the ion confinement is affected by this symmetry breaking.
Secondly, ISDEP has been applied successfully to the study of fast ion dynamics in fusion plasmas. The fast ions, with energies much larger than the thermal energy, are a product of the device’s heating system. Thus, a numerical predictive tool can be used to improve the heating efficiency. ISDEP has been combined with the FAFNER2 code to study such ions in stellarator (TJ-II, LHD) and tokamak (ITER) geometries. It has also been validated by experimental results. In particular, comparisons with the CNPA diagnostic in the TJ-II stellarator are remarkable.

More books from Springer International Publishing

Cover of the book Geometric Modeling in Probability and Statistics by Andrés de Bustos Molina
Cover of the book New Digital Technology in Education by Andrés de Bustos Molina
Cover of the book Car Tourism by Andrés de Bustos Molina
Cover of the book Human Language Technology. Challenges for Computer Science and Linguistics by Andrés de Bustos Molina
Cover of the book Incidental Radiological Findings by Andrés de Bustos Molina
Cover of the book Deep Learning and Convolutional Neural Networks for Medical Image Computing by Andrés de Bustos Molina
Cover of the book Medicine, Knowledge and Venereal Diseases in England, 1886-1916 by Andrés de Bustos Molina
Cover of the book The Role of Bacteria in Urology by Andrés de Bustos Molina
Cover of the book Enhanced Quality of Life and Smart Living by Andrés de Bustos Molina
Cover of the book Israeli Sociology by Andrés de Bustos Molina
Cover of the book Formal Methods: Foundations and Applications by Andrés de Bustos Molina
Cover of the book Interest Rate Modeling: Post-Crisis Challenges and Approaches by Andrés de Bustos Molina
Cover of the book Information Security by Andrés de Bustos Molina
Cover of the book Philosophical Perspectives on Democracy in the 21st Century by Andrés de Bustos Molina
Cover of the book Serious Games in Physical Rehabilitation by Andrés de Bustos Molina
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy