Lignocellulose Conversion

Enzymatic and Microbial Tools for Bioethanol Production

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Microbiology
Cover of the book Lignocellulose Conversion by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642378614
Publisher: Springer Berlin Heidelberg Publication: June 12, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642378614
Publisher: Springer Berlin Heidelberg
Publication: June 12, 2013
Imprint: Springer
Language: English

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs.   Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs.   Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery. 

More books from Springer Berlin Heidelberg

Cover of the book Remote Sensing Digital Image Analysis by
Cover of the book Natural and Artificial Rockslide Dams by
Cover of the book Biomedical Signals and Sensors II by
Cover of the book Nursing Informatics ’91 by
Cover of the book Die Therapie des Facio-Oralen Trakts by
Cover of the book Der Doppelgänger by
Cover of the book Shoulder Stiffness by
Cover of the book Tumours in Children by
Cover of the book Errors in Abdominal Radiology by
Cover of the book Digital Holography and Wavefront Sensing by
Cover of the book Wound Healing and Skin Physiology by
Cover of the book Frontiers in European Radiology by
Cover of the book Ionic-Liquid-Based Aqueous Biphasic Systems by
Cover of the book Management im Gesundheitswesen by
Cover of the book Recent Developments in Vector Optimization by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy