Machine Learning and Data Mining in Aerospace Technology

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Science & Nature, Technology, Aeronautics & Astronautics, General Computing
Cover of the book Machine Learning and Data Mining in Aerospace Technology by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783030202125
Publisher: Springer International Publishing Publication: July 2, 2019
Imprint: Springer Language: English
Author:
ISBN: 9783030202125
Publisher: Springer International Publishing
Publication: July 2, 2019
Imprint: Springer
Language: English

This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering.

This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering.

This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.

More books from Springer International Publishing

Cover of the book Nonlinear Resonances by
Cover of the book Biomarkers for Endometriosis by
Cover of the book Optimal Control of a Double Integrator by
Cover of the book Sports Science Research and Technology Support by
Cover of the book The Palgrave Handbook of Literary Translation by
Cover of the book Primary Exergy Cost of Goods and Services by
Cover of the book Introduction to Plasma Physics and Controlled Fusion by
Cover of the book Evolution of Silicon Sensor Technology in Particle Physics by
Cover of the book Customization 4.0 by
Cover of the book Neuropsychiatry Case Studies by
Cover of the book Korea’s Quest for Economic Democratization by
Cover of the book Mandibular Implant Prostheses by
Cover of the book European Yearbook of International Economic Law 2018 by
Cover of the book Pixar's America by
Cover of the book Microphysics of Atmospheric Phenomena by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy