Machine Learning Techniques for Space Weather

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Other Sciences, Applied Sciences
Cover of the book Machine Learning Techniques for Space Weather by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128117897
Publisher: Elsevier Science Publication: May 31, 2018
Imprint: Elsevier Language: English
Author:
ISBN: 9780128117897
Publisher: Elsevier Science
Publication: May 31, 2018
Imprint: Elsevier
Language: English

Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms.

Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.

  • Collects many representative non-traditional approaches to space weather into a single volume
  • Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists
  • Includes free software in the form of simple MATLABĀ® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms.

Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.

More books from Elsevier Science

Cover of the book Wave Energy Conversion by
Cover of the book Advances in Imaging and Electron Physics by
Cover of the book Computability Theory by
Cover of the book Essential MATLAB for Engineers and Scientists by
Cover of the book Plasma Etching Processes for Interconnect Realization in VLSI by
Cover of the book Phasor Measurement Units and Wide Area Monitoring Systems by
Cover of the book Antimicrobial Stewardship by
Cover of the book Analog Electronics by
Cover of the book Organosilicon Compounds by
Cover of the book Case Studies in the Traditional Food Sector by
Cover of the book Advances in Agronomy by
Cover of the book Multiphase Fluid Flow in Porous and Fractured Reservoirs by
Cover of the book Next Generation SSH2 Implementation by
Cover of the book Digital Signal Processing by
Cover of the book Big Data Application in Power Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy