Author: | John D. Cressler | ISBN: | 9781351834766 |
Publisher: | CRC Press | Publication: | October 3, 2018 |
Imprint: | CRC Press | Language: | English |
Author: | John D. Cressler |
ISBN: | 9781351834766 |
Publisher: | CRC Press |
Publication: | October 3, 2018 |
Imprint: | CRC Press |
Language: | English |
When you see a nicely presented set of data, the natural response is: “How did they do that; what tricks did they use; and how can I do that for myself?” Alas, usually, you must simply keep wondering, since such tricks-of- the-trade are usually held close to the vest and rarely divulged. Shamefully ignored in the technical literature, measurement and modeling of high-speed semiconductor devices is a fine art. Robust measuring and modeling at the levels of performance found in modern SiGe devices requires extreme dexterity in the laboratory to obtain reliable data, and then a valid model to fit that data.
Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume focuses on measurement and modeling of high-speed silicon heterostructure devices. The chapter authors provide experience-based tricks-of-the-trade and the subtle nuances of measuring and modeling advanced devices, making this an important reference for the semiconductor industry. It includes easy-to-reference appendices covering topics such as the properties of silicon and germanium, the generalized Moll-Ross relations, the integral charge-control model, and sample SiGe HBT compact model parameters.
When you see a nicely presented set of data, the natural response is: “How did they do that; what tricks did they use; and how can I do that for myself?” Alas, usually, you must simply keep wondering, since such tricks-of- the-trade are usually held close to the vest and rarely divulged. Shamefully ignored in the technical literature, measurement and modeling of high-speed semiconductor devices is a fine art. Robust measuring and modeling at the levels of performance found in modern SiGe devices requires extreme dexterity in the laboratory to obtain reliable data, and then a valid model to fit that data.
Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume focuses on measurement and modeling of high-speed silicon heterostructure devices. The chapter authors provide experience-based tricks-of-the-trade and the subtle nuances of measuring and modeling advanced devices, making this an important reference for the semiconductor industry. It includes easy-to-reference appendices covering topics such as the properties of silicon and germanium, the generalized Moll-Ross relations, the integral charge-control model, and sample SiGe HBT compact model parameters.