Mitochondrial Oxidative Phosphorylation

Nuclear-Encoded Genes, Enzyme Regulation, and Pathophysiology

Nonfiction, Science & Nature, Science, Other Sciences, Molecular Biology, Health & Well Being, Medical, Medical Science, Genetics
Cover of the book Mitochondrial Oxidative Phosphorylation by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461435730
Publisher: Springer New York Publication: June 23, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461435730
Publisher: Springer New York
Publication: June 23, 2012
Imprint: Springer
Language: English

This book will describe the nuclear encoded genes and their expressed proteins of mitochondrial oxidative phosphorylation. Most of these genes occur in eukaryotic cells, but not in bacteria or archaea. The main function of mitochondria, the synthesis of ATP, is performed at subunits of proton pumps (complexes I, III, IV and V), which are encoded on mitochondrial DNA. The nuclear encoded subunits have mostly a regulatory function. However, the specific physiological functions of the nuclear encoded subunits of complexes I, III, IV, and V are mostly unknown. New data indicates that they are essential for life of higher organisms, which is characterized by an adult life without cell division (postmeiotic stage) in most tissues, after the juvenile growth. For complex IV (cytochrome c oxidase) some of these subunits occur in tissue-specific (subunits IV, VIa, VIb, VIIa, VIII), developmental-specific (subunits IV, VIa, and VIIa) as well as species-specific isoforms. Defective genes of some subunits were shown to induce mitochondrial diseases. Mitochondrial genes and human diseases will also be covered.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book will describe the nuclear encoded genes and their expressed proteins of mitochondrial oxidative phosphorylation. Most of these genes occur in eukaryotic cells, but not in bacteria or archaea. The main function of mitochondria, the synthesis of ATP, is performed at subunits of proton pumps (complexes I, III, IV and V), which are encoded on mitochondrial DNA. The nuclear encoded subunits have mostly a regulatory function. However, the specific physiological functions of the nuclear encoded subunits of complexes I, III, IV, and V are mostly unknown. New data indicates that they are essential for life of higher organisms, which is characterized by an adult life without cell division (postmeiotic stage) in most tissues, after the juvenile growth. For complex IV (cytochrome c oxidase) some of these subunits occur in tissue-specific (subunits IV, VIa, VIb, VIIa, VIII), developmental-specific (subunits IV, VIa, and VIIa) as well as species-specific isoforms. Defective genes of some subunits were shown to induce mitochondrial diseases. Mitochondrial genes and human diseases will also be covered.

More books from Springer New York

Cover of the book Wireless Sensor and Mobile Ad-Hoc Networks by
Cover of the book Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory by
Cover of the book Vascular Liver Disease by
Cover of the book Stability of Linear Delay Differential Equations by
Cover of the book Residue Reviews by
Cover of the book The ADI Model Problem by
Cover of the book Biophysics of DNA-Protein Interactions by
Cover of the book Episodes From the Early History of Astronomy by
Cover of the book Low Complexity MIMO Detection by
Cover of the book Advances in Communication Research to Reduce Childhood Obesity by
Cover of the book Packaging for Food Preservation by
Cover of the book A SAS/IML Companion for Linear Models by
Cover of the book The Molecular Basis of Human Cancer by
Cover of the book Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment by
Cover of the book Children in Pain by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy