Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint

Nonfiction, Science & Nature, Technology, Material Science, Science, Physics, Mechanics
Cover of the book Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint by Haoyun Tu, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Haoyun Tu ISBN: 9783319672779
Publisher: Springer International Publishing Publication: October 12, 2017
Imprint: Springer Language: English
Author: Haoyun Tu
ISBN: 9783319672779
Publisher: Springer International Publishing
Publication: October 12, 2017
Imprint: Springer
Language: English

In this thesis, the author investigates experimentally and numerically

the fracture behavior of an electron beam welded joint made from

two butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-

Needleman (GTN) model and the cohesive zone model (CZM) were

adopted to predict the crack propagation of thick compact tension (CT)

specimens. Advantages and disadvantages of the three mentioned models

are discussed. The cohesive zone model is suggested as it is easy to use

for scientists & engineers because the CZM has less model parameters

and can be used to simulate arbitrary crack propagation. The results

shown in this thesis help to evaluate the fracture behavior of a metallic

material. A 3D optical deformation measurement system (ARAMIS) and

the synchrotron radiation-computed laminography (SRCL) technique

reveal for the first time the damage evolution on the surface of the sample

and inside a thin sheet specimen obtained from steel S355. Damage

evolution by void initiation, growth and coalescence are visualized in

2D and 3D laminographic images. Two fracture types, i.e., a flat crack

propagation originated from void initiation, growth and coalescence

and a shear coalescence mechanism are visualized in 2D and 3D images

of laminographic data, showing the complexity of real fracture. In

the dissertation, the 3D Rousselier model is applied for the first time

successfully to predict different microcrack shapes before shear cracks

arise by defining the finite elements in front of the initial notch with

inhomogeneous f0-values. The influence of the distribution of inclusions

on the fracture shape is also discussed. For the analyzed material, a

homogeneous distribution of particles in the material provides the

highest resistance to fracture.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this thesis, the author investigates experimentally and numerically

the fracture behavior of an electron beam welded joint made from

two butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-

Needleman (GTN) model and the cohesive zone model (CZM) were

adopted to predict the crack propagation of thick compact tension (CT)

specimens. Advantages and disadvantages of the three mentioned models

are discussed. The cohesive zone model is suggested as it is easy to use

for scientists & engineers because the CZM has less model parameters

and can be used to simulate arbitrary crack propagation. The results

shown in this thesis help to evaluate the fracture behavior of a metallic

material. A 3D optical deformation measurement system (ARAMIS) and

the synchrotron radiation-computed laminography (SRCL) technique

reveal for the first time the damage evolution on the surface of the sample

and inside a thin sheet specimen obtained from steel S355. Damage

evolution by void initiation, growth and coalescence are visualized in

2D and 3D laminographic images. Two fracture types, i.e., a flat crack

propagation originated from void initiation, growth and coalescence

and a shear coalescence mechanism are visualized in 2D and 3D images

of laminographic data, showing the complexity of real fracture. In

the dissertation, the 3D Rousselier model is applied for the first time

successfully to predict different microcrack shapes before shear cracks

arise by defining the finite elements in front of the initial notch with

inhomogeneous f0-values. The influence of the distribution of inclusions

on the fracture shape is also discussed. For the analyzed material, a

homogeneous distribution of particles in the material provides the

highest resistance to fracture.

More books from Springer International Publishing

Cover of the book Infinity in Early Modern Philosophy by Haoyun Tu
Cover of the book Sport and Physical Activity in the Heat by Haoyun Tu
Cover of the book Early Cretaceous Volcanism in Central and Eastern Argentina During Gondwana Break-Up by Haoyun Tu
Cover of the book Mycotoxins in Plants and Plant Products by Haoyun Tu
Cover of the book Human Rights, Transitional Justice, and the Reconstruction of Political Order in Latin America by Haoyun Tu
Cover of the book Time-Varying Vector Fields and Their Flows by Haoyun Tu
Cover of the book Teaching Gender and Sex in Contemporary America by Haoyun Tu
Cover of the book Discrete Optimization and Operations Research by Haoyun Tu
Cover of the book Magnetic Resonance and Its Applications by Haoyun Tu
Cover of the book Recentering Africa in International Relations by Haoyun Tu
Cover of the book Research in Attacks, Intrusions, and Defenses by Haoyun Tu
Cover of the book How Systems Form and How Systems Break by Haoyun Tu
Cover of the book Grind Hardening Process by Haoyun Tu
Cover of the book La Garrotxa Volcanic Field of Northeast Spain by Haoyun Tu
Cover of the book Stories of Progressive Institutional Change by Haoyun Tu
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy