Proceedings of ELM-2016

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Proceedings of ELM-2016 by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319574219
Publisher: Springer International Publishing Publication: May 25, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319574219
Publisher: Springer International Publishing
Publication: May 25, 2017
Imprint: Springer
Language: English

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.  Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large‐scale computing and artificial intelligence.

This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.  Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large‐scale computing and artificial intelligence.

This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. 

More books from Springer International Publishing

Cover of the book Semigroup Methods for Evolution Equations on Networks by
Cover of the book Persistent Work-related Technology Use, Recovery and Well-being Processes by
Cover of the book A Defeasible Logic Programming-Based Framework to Support Argumentation in Semantic Web Applications by
Cover of the book Advanced Techniques for Power, Energy, and Thermal Management for Clustered Manycores by
Cover of the book Playing to Learn with Reacting to the Past by
Cover of the book Dynamics of Mathematical Models in Biology by
Cover of the book Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration by
Cover of the book Ethical Dilemmas of Migration by
Cover of the book Intelligent Software Methodologies, Tools and Techniques by
Cover of the book Digital Mammography by
Cover of the book Security in Computing and Communications by
Cover of the book Animal Ethics in the Age of Humans by
Cover of the book Large-Scale Networks in Engineering and Life Sciences by
Cover of the book The Management of Global Careers by
Cover of the book Communities of Practice: Art, Play, and Aesthetics in Early Childhood by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy