Prokaryotic Cytoskeletons

Filamentous Protein Polymers Active in the Cytoplasm of Bacterial and Archaeal Cells

Nonfiction, Health & Well Being, Medical, Medical Science, Genetics, Science & Nature, Science, Biological Sciences, Biochemistry
Cover of the book Prokaryotic Cytoskeletons by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319530475
Publisher: Springer International Publishing Publication: May 11, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319530475
Publisher: Springer International Publishing
Publication: May 11, 2017
Imprint: Springer
Language: English

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells.

Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution.

Chapter 3 of this book is open access under a CC BY 4.0 license.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells.

Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution.

Chapter 3 of this book is open access under a CC BY 4.0 license.

More books from Springer International Publishing

Cover of the book Pieces and Parts in Scientific Texts by
Cover of the book Smart Card Research and Advanced Applications by
Cover of the book Implications of Pyrite Oxidation for Engineering Works by
Cover of the book The Role of Mechanics in the Study of Lipid Bilayers by
Cover of the book The Capsicum Genome by
Cover of the book Linguistic and Cultural Innovation in Schools by
Cover of the book Holocaust Archaeologies by
Cover of the book Combinatorial Algorithms by
Cover of the book Introduction to Time-Delay Systems by
Cover of the book Bifurcation without Parameters by
Cover of the book Cancer and Zebrafish by
Cover of the book LQG for the Bewildered by
Cover of the book Adolescent Gynecology by
Cover of the book Advances in Luxury Brand Management by
Cover of the book Progress in the Chemistry of Organic Natural Products 108 by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy