Random Processes by Example

Nonfiction, Science & Nature, Mathematics, Applied, Statistics
Cover of the book Random Processes by Example by Mikhail Lifshits, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Mikhail Lifshits ISBN: 9789814522304
Publisher: World Scientific Publishing Company Publication: February 14, 2014
Imprint: WSPC Language: English
Author: Mikhail Lifshits
ISBN: 9789814522304
Publisher: World Scientific Publishing Company
Publication: February 14, 2014
Imprint: WSPC
Language: English

This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes.

Next, it illustrates general concepts by handling a transparent but rich example of a “teletraffic model”. A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable Lévy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations.

The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes.

Contents:

  • Preliminaries:

    • Random Variables: A Summary
    • From Poisson to Stable Variables
    • Limit Theorems for Sums and Domains of Attraction
    • Random Vectors
  • Random Processes:

    • Random Processes: Main Classes
    • Examples of Gaussian Random Processes
    • Random Measures and Stochastic Integrals
    • Limit Theorems for Poisson Integrals
    • Lévy Processes
    • Spectral Representations
    • Convergence of Random Processes
  • Teletraffic Models:

    • A Model of Service System
    • Limit Theorems for the Workload
    • Micropulse Model
    • Spacial Extensions

Readership: Graduate students and researchers in probability & statistics.
Key Features:

  • A thorough choice of self-contained material packed in a small volume enabling the reader to focus on really important issues and reach the frontline of research in a pretty short time
  • Main examples explaining the theory originating from the modern research field
  • Handling full scale examples in an in-depth manner (unusual for a textbook) brings in a touch of research work in an otherwise routine learning method
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes.

Next, it illustrates general concepts by handling a transparent but rich example of a “teletraffic model”. A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable Lévy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations.

The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes.

Contents:

Readership: Graduate students and researchers in probability & statistics.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Exercise Personal Training 101 by Mikhail Lifshits
Cover of the book Making Mathematics More Practical by Mikhail Lifshits
Cover of the book Status of Theoretical Understanding and of Experimental Power for LHC Physics and Beyond by Mikhail Lifshits
Cover of the book Inclusive Growth and Development in the 21st Century by Mikhail Lifshits
Cover of the book Human Amniotic Membrane by Mikhail Lifshits
Cover of the book Computational Models of Cognitive Processes by Mikhail Lifshits
Cover of the book Learning Experiences to Promote Mathematics Learning by Mikhail Lifshits
Cover of the book Computer Vision in Robotics and Industrial Applications by Mikhail Lifshits
Cover of the book Decision Making and Soft Computing by Mikhail Lifshits
Cover of the book Computer-Based Problem Solving Process by Mikhail Lifshits
Cover of the book Foreign Direct Investment by Mikhail Lifshits
Cover of the book Computer-Aided Engineering Design with SolidWorks by Mikhail Lifshits
Cover of the book Dynamical and Complex Systems by Mikhail Lifshits
Cover of the book China's Japan Policy by Mikhail Lifshits
Cover of the book Is Man to Survive Science? by Mikhail Lifshits
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy