Space Launch System (SLS): America's Next Manned Rocket for NASA Deep Space Exploration to the Moon, Asteroids, Mars - Rocket Plans, Ground Facilities, Tests, Saturn V Comparisons, Configurations

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book Space Launch System (SLS): America's Next Manned Rocket for NASA Deep Space Exploration to the Moon, Asteroids, Mars - Rocket Plans, Ground Facilities, Tests, Saturn V Comparisons, Configurations by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781476406466
Publisher: Progressive Management Publication: April 30, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781476406466
Publisher: Progressive Management
Publication: April 30, 2012
Imprint: Smashwords Edition
Language: English

This is an essential guide to NASA's next manned rocket for deep space exploration, the Space Launch System (SLS), which was authorized by Congress after the cancellation of the Ares rockets of the Constellation program. In the Block 2 configuration, the rocket will be larger than the famous Saturn V moon rocket.

Coverage includes: vehicle configurations (Block 1, 1A, and 2); RS-25D engine (the Space Shuttle Main Engine); SRM; ground systems development and operations program including the Crawler-Transporter (CT); Mobile Launcher (ML); J-2X engine; exploration systems development status; exploration test flight previews; affordability implementation; progress reports; SLS driving objectives; NASA 90-day report to Congress on the SLS and Orion Multi-purpose Crew Vehicle; the Michoud Assembly Facility (MAF); and the Advanced Booster program.

The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017.

The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station.

The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

The SLS will have an initial lift capacity of 70 metric tons. That's more than 154,000 pounds, or 77 tons, roughly the weight of 40 sport utility vehicles. The lift capacity will be evolvable to 130 metric tons more than 286,000 pounds, or 143 tons -- enough to lift 75 SUVs.

This architecture enables NASA to leverage existing capabilities and lower development costs by using liquid hydrogen and liquid oxygen for both the core and upper stages. Additionally, this architecture provides a modular launch vehicle that can be configured for specific mission needs using a variation of common elements. NASA may not need to lift 130 metric tons for each mission and the flexibility of this modular architecture allows the agency to use different core stage, upper stage, and first-stage booster combinations to achieve the most efficient launch vehicle for the desired mission.

The new vehicle is designed to be flexible and evolvable for crew or cargo missions. Lessons from previous programs have been incorporated so the system is safe, affordable, and sustainable to advance human exploration of space.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This is an essential guide to NASA's next manned rocket for deep space exploration, the Space Launch System (SLS), which was authorized by Congress after the cancellation of the Ares rockets of the Constellation program. In the Block 2 configuration, the rocket will be larger than the famous Saturn V moon rocket.

Coverage includes: vehicle configurations (Block 1, 1A, and 2); RS-25D engine (the Space Shuttle Main Engine); SRM; ground systems development and operations program including the Crawler-Transporter (CT); Mobile Launcher (ML); J-2X engine; exploration systems development status; exploration test flight previews; affordability implementation; progress reports; SLS driving objectives; NASA 90-day report to Congress on the SLS and Orion Multi-purpose Crew Vehicle; the Michoud Assembly Facility (MAF); and the Advanced Booster program.

The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017.

The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station.

The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

The SLS will have an initial lift capacity of 70 metric tons. That's more than 154,000 pounds, or 77 tons, roughly the weight of 40 sport utility vehicles. The lift capacity will be evolvable to 130 metric tons more than 286,000 pounds, or 143 tons -- enough to lift 75 SUVs.

This architecture enables NASA to leverage existing capabilities and lower development costs by using liquid hydrogen and liquid oxygen for both the core and upper stages. Additionally, this architecture provides a modular launch vehicle that can be configured for specific mission needs using a variation of common elements. NASA may not need to lift 130 metric tons for each mission and the flexibility of this modular architecture allows the agency to use different core stage, upper stage, and first-stage booster combinations to achieve the most efficient launch vehicle for the desired mission.

The new vehicle is designed to be flexible and evolvable for crew or cargo missions. Lessons from previous programs have been incorporated so the system is safe, affordable, and sustainable to advance human exploration of space.

More books from Progressive Management

Cover of the book History of the Joint Chiefs of Staff: The Prelude to the War in Vietnam 1954-1959 - North and South Vietnam, Geneva Conference, Collins Mission by Progressive Management
Cover of the book Helicopters in Irregular Warfare: Algeria, Vietnam, and Afghanistan - Counterinsurgency, COIN, American, French, Soviet Militaries, Airmobility and Political Goals in Combat by Progressive Management
Cover of the book George Washington and the Politics of War and Revolution: American Revolutionary Leadership, Washington's Command - Power of Symbolism, Unity, and Purpose, Awakening of a Continent, Analysis Framework by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Ovarian Germ Cell Tumors - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Shipboard Operations (FM 1-564) - Army Aviation Unit Operations from Navy and Coast Guard Ships (Professional Format Series) by Progressive Management
Cover of the book Sharing Success: Owning Failure: Preparing to Command in the Twenty-First Century Air Force by Progressive Management
Cover of the book Essential Guide to Transnistria and the Transniestrian Contest in Moldova: Russia, NATO, European Union, Ukraine, OSCE, "Frozen" Conflict by Progressive Management
Cover of the book Challenge and Response: Anticipating U.S. Military Security Concerns - Future Wars and American Military Responses, Changing Nature of Warfare, Space Assets by Progressive Management
Cover of the book National Defense Intelligence College Paper: Bringing Intelligence About - Practitioners Reflect on Best Practices - CIA Analysis, Analytical Tradecraft, Process Management by Progressive Management
Cover of the book Eliminating War by Eliminating Warriors: A Case Study in Costa Rica - Abolishing the Military and Army, Culture, Economic Evolution, Domestic Developments, External Threats, Historical Foundations by Progressive Management
Cover of the book Sixteen Cases of Mission Command: Historical Accounts of Battles in American Civil War, Battle of Nile, War of 1812, World War II Europe and Pacific, Corregidor, Sicily, Iraq War, Afghanistan War by Progressive Management
Cover of the book Apollo and America's Moon Landing Program - Moonport: A History of Apollo Launch Facilities and Operations - Saturn 1, Saturn 1B, and Saturn V Rocket Launch Pads, Launch Complex 39 (NASA SP-4204) by Progressive Management
Cover of the book Stopping Mass Killings in Africa: Genocide, Airpower, and Intervention - Somalia, Rwanda, Hutus and Tutsis, Ivory Coast by Progressive Management
Cover of the book Lessons from the Normandy Invasion of World War II: Staff Development, Deception Operations, and Force Projection - Complexity of Planning, Sluggish Progress, Signals Intelligence and SHAEF Staff by Progressive Management
Cover of the book Deepwater Horizon Gulf of Mexico Oil Spill: Report on the Causes of the April 20, 2010 Macondo Well Blowout by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy