STM Investigation of Molecular Architectures of Porphyrinoids on a Ag(111) Surface

Supramolecular Ordering, Electronic Properties and Reactivity

Nonfiction, Science & Nature, Science, Chemistry, Analytic, Physical & Theoretical
Cover of the book STM Investigation of Molecular Architectures of Porphyrinoids on a Ag(111) Surface by Florian Buchner, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Florian Buchner ISBN: 9783642148408
Publisher: Springer Berlin Heidelberg Publication: November 9, 2010
Imprint: Springer Language: English
Author: Florian Buchner
ISBN: 9783642148408
Publisher: Springer Berlin Heidelberg
Publication: November 9, 2010
Imprint: Springer
Language: English

The functionalization of surfaces on the nanoscale is one of the most fascinating and at the same time challenging topics in science. It is the key to tailoring catalysts, sensors, or devices for solar energy conversion, whose functional principle is based on the interaction of an active solid surface with another (liquid or gaseous) phase. As an example, planar transition metal complexes adsorbed on solid supports are promising candidates for novel heterogeneous catalysts. An important feature of these catalysts, compared to supported metal clusters, is the fact that the active sites, i. e. , the coordinated metal centers with their vacant axial coordination sites, are well de?ned and uniform. Metalloporphyrinoids are particularly suitable in this respect because they combine a structure forming element—the rigid molecular frame, which often induces long range order—with an active site, the coordinated metal ion. Its planar coordination environment leaves two axial coordination sites available for additional ligands. If adsorbed on a surface, one of these axial sites is occupied by the underlying substrate. The resulting electronic interaction with the surface can be used to tailor the electronic structure and thereby the reactivity of the metal center. The remaining site is free for the attachment of molecules (sensor functionality) and/or operates as a reaction center (single-site catalysis). Prototype examples are omnipresent in nature, where in particular metallo-tetrapyrrols play a decisive role in important biological processes, with the most prominent examples being iron porphyrins in heme, magnesium porphyrins in chlorophyll, and cobalt corrin in vitamin B12.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The functionalization of surfaces on the nanoscale is one of the most fascinating and at the same time challenging topics in science. It is the key to tailoring catalysts, sensors, or devices for solar energy conversion, whose functional principle is based on the interaction of an active solid surface with another (liquid or gaseous) phase. As an example, planar transition metal complexes adsorbed on solid supports are promising candidates for novel heterogeneous catalysts. An important feature of these catalysts, compared to supported metal clusters, is the fact that the active sites, i. e. , the coordinated metal centers with their vacant axial coordination sites, are well de?ned and uniform. Metalloporphyrinoids are particularly suitable in this respect because they combine a structure forming element—the rigid molecular frame, which often induces long range order—with an active site, the coordinated metal ion. Its planar coordination environment leaves two axial coordination sites available for additional ligands. If adsorbed on a surface, one of these axial sites is occupied by the underlying substrate. The resulting electronic interaction with the surface can be used to tailor the electronic structure and thereby the reactivity of the metal center. The remaining site is free for the attachment of molecules (sensor functionality) and/or operates as a reaction center (single-site catalysis). Prototype examples are omnipresent in nature, where in particular metallo-tetrapyrrols play a decisive role in important biological processes, with the most prominent examples being iron porphyrins in heme, magnesium porphyrins in chlorophyll, and cobalt corrin in vitamin B12.

More books from Springer Berlin Heidelberg

Cover of the book Intellectual Property Theory and Practice by Florian Buchner
Cover of the book Unternehmensnetzwerke by Florian Buchner
Cover of the book Joint Meeting Munich 1968 by Florian Buchner
Cover of the book Logic, Language, and Computation by Florian Buchner
Cover of the book Tetrahedrally Bonded Amorphous Carbon Films I by Florian Buchner
Cover of the book Supercavitation by Florian Buchner
Cover of the book Lymphoproliferative Diseases of the Skin by Florian Buchner
Cover of the book Early Breast Cancer by Florian Buchner
Cover of the book Arithmetische Funktionen by Florian Buchner
Cover of the book Fluorescent Proteins II by Florian Buchner
Cover of the book Anaesthesia by Florian Buchner
Cover of the book Liebe lässt sich lernen by Florian Buchner
Cover of the book High performance im Krankenhausmanagement by Florian Buchner
Cover of the book Study of the Inclusive Beauty Production at CMS and Construction and Commissioning of the CMS Pixel Barrel Detector by Florian Buchner
Cover of the book Novel Selenium-Mediated Rearrangements and Cyclisations by Florian Buchner
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy