The Rise and Fall of Dyna-Soar: A History of Air Force Hypersonic R&D, 1944-1963 - Pathfinding Effort to Develop a Transatmospheric Boost Glider and Spaceplane, Manned Military Space Program

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book The Rise and Fall of Dyna-Soar: A History of Air Force Hypersonic R&D, 1944-1963 - Pathfinding Effort to Develop a Transatmospheric Boost Glider and Spaceplane, Manned Military Space Program by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310782213
Publisher: Progressive Management Publication: April 1, 2015
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310782213
Publisher: Progressive Management
Publication: April 1, 2015
Imprint: Smashwords Edition
Language: English

Professionally converted for accurate flowing-text e-book format reproduction, this is an informative history of the USAF Dyna-Soar manned spaceplane program.

Chapter 1 - Developing Technology To Meet An Expected Future * Chapter 2 - Pushing The State-Of-The-Art * Chapter 3 - Continuing To Push The State-Of-The-Art * Chapter 4 - Staying On Course * Chapter 5 - Struggling To Maintain The Military Mission * Chapter 6 - Manned Military Space Programs * Chapter 7 - The Dyna-Soar Cancellation

Dyna-Soar was not a technological failure. It could have flown. On the other hand, Dyna-Soar's cancellation marked a political-economic failure, illustrating the need for a rapid and clear consensus of purpose, single-minded and politically astute leadership, and the near-term attainment of advanced technology. Once Dyna-Soar was canceled, NASA began to acquire an increasing amount of the Air Force's hypersonic research until its Space Shuttle offered the Air Force another chance for a joint venture equal in scope to Dyna-Soar. This time NASA would take the lead in developing a new evolutionary technological system.
While Dyna-Soar began in 1957, the roots of Air Force hypersonic R&D go back at least to 1944. In that year Henry H. "Hap" Arnold, the commanding general of the Army Air Forces (AAF), identified the need for advanced airpower weapon systems to meet the anticipated postwar enemy threat. Hoping to capitalize on expanding R&D investments during the war and on public sentiment awakened to the potential dangers of the Soviet Union after the war, Arnold and other advocates of a unified national program of aeronautical development sought to create the means for forecasting airpower weapon systems and organizing new institutions devoted solely to aerospace R&D. Germany's advanced technological capabilities, especially the supersonic flights of the V-2 rocket, illustrated how America might no longer be immune from enemy attack. As the Soviet Union developed nuclear warheads, intercontinental ballistic missiles (ICBMs), and long-range strategic airpower, the need to maintain the technological superiority of America's airpower assets seemed all the more important in determining the outcome of future wars. Harnessing the ability to push the aeronautical state-of-the-art to ever greater speeds, higher altitudes, and flights over longer distances would this be central to the initiatives of the AAF's Scientific Advisory Group (SAG), created in September 1944 to search the world for the most advanced aeronautical ideas and determine the potential of these ideas for future wartime applications. Taking the SAG's initial forecasts a step farther, a second AAF-created institution-RAND (an acronym for R&D Corporation, a non-profit R&D agency created by Arnold and Douglas Aircraft Corporation president Donald Douglas to study intercontinental warfare)-predicted the importance of orbital satellites. RAND's insight helped foster continued R&D support for ballistic missiles and helped demonstrate the possibilities of supersonic and even hypersonic propulsion systems.

In January 1963, Secretary of the Air Force Eugene M. Zuckert believed if the Air Force was going to have spacecraft with the flexibility required in military systems it must develop the capability to land these craft at points and times of the Air Force's choosing, and to land them in a condition in which they could be readily turned around and reused. The Air Force could not be satisfied with ballistic-type reentry where a spacecraft parachuted into the ocean and was recovered by a salvage-type operation. In fact, the special technology necessary to satisfy the military requirement for routine access to space would not be produced as a fallout of present or planned NASA programs.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Professionally converted for accurate flowing-text e-book format reproduction, this is an informative history of the USAF Dyna-Soar manned spaceplane program.

Chapter 1 - Developing Technology To Meet An Expected Future * Chapter 2 - Pushing The State-Of-The-Art * Chapter 3 - Continuing To Push The State-Of-The-Art * Chapter 4 - Staying On Course * Chapter 5 - Struggling To Maintain The Military Mission * Chapter 6 - Manned Military Space Programs * Chapter 7 - The Dyna-Soar Cancellation

Dyna-Soar was not a technological failure. It could have flown. On the other hand, Dyna-Soar's cancellation marked a political-economic failure, illustrating the need for a rapid and clear consensus of purpose, single-minded and politically astute leadership, and the near-term attainment of advanced technology. Once Dyna-Soar was canceled, NASA began to acquire an increasing amount of the Air Force's hypersonic research until its Space Shuttle offered the Air Force another chance for a joint venture equal in scope to Dyna-Soar. This time NASA would take the lead in developing a new evolutionary technological system.
While Dyna-Soar began in 1957, the roots of Air Force hypersonic R&D go back at least to 1944. In that year Henry H. "Hap" Arnold, the commanding general of the Army Air Forces (AAF), identified the need for advanced airpower weapon systems to meet the anticipated postwar enemy threat. Hoping to capitalize on expanding R&D investments during the war and on public sentiment awakened to the potential dangers of the Soviet Union after the war, Arnold and other advocates of a unified national program of aeronautical development sought to create the means for forecasting airpower weapon systems and organizing new institutions devoted solely to aerospace R&D. Germany's advanced technological capabilities, especially the supersonic flights of the V-2 rocket, illustrated how America might no longer be immune from enemy attack. As the Soviet Union developed nuclear warheads, intercontinental ballistic missiles (ICBMs), and long-range strategic airpower, the need to maintain the technological superiority of America's airpower assets seemed all the more important in determining the outcome of future wars. Harnessing the ability to push the aeronautical state-of-the-art to ever greater speeds, higher altitudes, and flights over longer distances would this be central to the initiatives of the AAF's Scientific Advisory Group (SAG), created in September 1944 to search the world for the most advanced aeronautical ideas and determine the potential of these ideas for future wartime applications. Taking the SAG's initial forecasts a step farther, a second AAF-created institution-RAND (an acronym for R&D Corporation, a non-profit R&D agency created by Arnold and Douglas Aircraft Corporation president Donald Douglas to study intercontinental warfare)-predicted the importance of orbital satellites. RAND's insight helped foster continued R&D support for ballistic missiles and helped demonstrate the possibilities of supersonic and even hypersonic propulsion systems.

In January 1963, Secretary of the Air Force Eugene M. Zuckert believed if the Air Force was going to have spacecraft with the flexibility required in military systems it must develop the capability to land these craft at points and times of the Air Force's choosing, and to land them in a condition in which they could be readily turned around and reused. The Air Force could not be satisfied with ballistic-type reentry where a spacecraft parachuted into the ocean and was recovered by a salvage-type operation. In fact, the special technology necessary to satisfy the military requirement for routine access to space would not be produced as a fallout of present or planned NASA programs.

More books from Progressive Management

Cover of the book Professional Military Education for Air Force Officers: Comments and Criticisms - Evolution of Doctrine World War II to Post-Vietnam, Air University, Defining the Officer Corps, Success and Failure by Progressive Management
Cover of the book Revision of Career Marksmanship Training Requirements for the United States Marine Corps: Annual Rifle Qualifications, Refocus Resources to Advanced Marksmanship, Score Keeping, Filling Quotas by Progressive Management
Cover of the book Operations of - and Challenges to - the Army Medical Department (AMEDD) During the U.S. - Mexican War, 1846-1848: Field Operations of Major Generals Winfield Scott and Zachary Taylor by Progressive Management
Cover of the book Emergency Medical Services (EMS) Recruitment and Retention Manual - Guidebook for Managers and Recruiters of Volunteer and Career Personnel, Leadership, Stress Management, Marketing by Progressive Management
Cover of the book Complete Guide to the 1961 SL-1 Fatal Nuclear Power Plant Accident: Accident and Recovery Operations Reports, Official Findings, Timeline of Events, Technical Details, Safety Implications by Progressive Management
Cover of the book Preventing Violent Extremism in the United States: White House Plan for Empowering Local Partners, al-Qaeda, Radicalization and Terrorist Recruitment by Progressive Management
Cover of the book 21st Century Textbooks of Military Medicine - Military Preventive Medicine: Mobilization and Deployment, Volume 1 - Diseases and Conditions from Jet Lag to WMDs and NBC (Emergency War Surgery Series) by Progressive Management
Cover of the book U.S. Marines History: The 1st Marine Division and Its Regiments, 5th Marines, 7th Marines, 11th Marines, Guadalcanal, Lineage, Honors and Commanding Officers by Progressive Management
Cover of the book Shared Voyage: Learning and Unlearning from Remarkable Projects - Advanced Composition Explorer ACE, Joint Air-to-Surface Standoff Missile JASSM , Pathfinder Solar Airplane, AMRAAM Missile by Progressive Management
Cover of the book The First United States Army Observers of Military Conflicts in Post Napoleonic Europe (1855-1871) - Delafield Commission to the Crimean War and Sheridan Expedition to the Franco-Prussian War by Progressive Management
Cover of the book Space Shuttle NASA Mission Reports: 1986 and 1988 Missions, STS 61-C, STS-26, STS-27 by Progressive Management
Cover of the book Aces and Aerial Victories: U.S. Air Force in Southeast Asia 1965-1973 - Detailed History of Vietnam Air War, Dramatic Aerial Combat Tales of Heroes, F-4, F-105, Enemy MIG Fighter Planes, B-52 Gunners by Progressive Management
Cover of the book 21st Century Peacekeeping and Stability Operations Institute (PKSOI) Papers - Toward a Risk Management Defense Strategy, DoD Reviews by Progressive Management
Cover of the book Inside the International Space Station (ISS): NASA Command and Data Handling (CDH) Astronaut Training Manual by Progressive Management
Cover of the book The Report of the Presidential Commission on the Space Shuttle Challenger Accident: The Tragedy of Mission 51-L in 1986 - Volume Two, Appendix L, M: NASA Accident Analysis, Morton Thiokol Comments by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy