Author: | L.A. Eriksson | ISBN: | 9780080542706 |
Publisher: | Elsevier Science | Publication: | February 19, 2001 |
Imprint: | Elsevier Science | Language: | English |
Author: | L.A. Eriksson |
ISBN: | 9780080542706 |
Publisher: | Elsevier Science |
Publication: | February 19, 2001 |
Imprint: | Elsevier Science |
Language: | English |
Theoretical chemistry has been an area of tremendous expansion and development over the past decade; from an approach where we were able to treat only a few atoms quantum mechanically or make fairly crude molecular dynamics simulations, into a discipline with an accuracy and predictive power that has rendered it an essential complementary tool to experiment in basically all areas of science.
This volume gives a flavour of the types of problems in biochemistry that theoretical calculations can solve at present, and illustrates the tremendous predictive power these approaches possess.
A wide range of computational approaches, from classical MD and Monte Carlo methods, via semi-empirical and DFT approaches on isolated model systems, to Car-Parinello QM-MD and novel hybrid QM/MM studies are covered. The systems investigated also cover a broad range; from membrane-bound proteins to various types of enzymatic reactions as well as inhibitor studies, cofactor properties, solvent effects, transcription and radiation damage to DNA.
Theoretical chemistry has been an area of tremendous expansion and development over the past decade; from an approach where we were able to treat only a few atoms quantum mechanically or make fairly crude molecular dynamics simulations, into a discipline with an accuracy and predictive power that has rendered it an essential complementary tool to experiment in basically all areas of science.
This volume gives a flavour of the types of problems in biochemistry that theoretical calculations can solve at present, and illustrates the tremendous predictive power these approaches possess.
A wide range of computational approaches, from classical MD and Monte Carlo methods, via semi-empirical and DFT approaches on isolated model systems, to Car-Parinello QM-MD and novel hybrid QM/MM studies are covered. The systems investigated also cover a broad range; from membrane-bound proteins to various types of enzymatic reactions as well as inhibitor studies, cofactor properties, solvent effects, transcription and radiation damage to DNA.