Topological Structures in Ferroic Materials

Domain Walls, Vortices and Skyrmions

Nonfiction, Science & Nature, Science, Physics, Magnetism, Solid State Physics
Cover of the book Topological Structures in Ferroic Materials by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319253015
Publisher: Springer International Publishing Publication: February 12, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319253015
Publisher: Springer International Publishing
Publication: February 12, 2016
Imprint: Springer
Language: English

This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science,  topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications.
To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science,  topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications.
To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

More books from Springer International Publishing

Cover of the book Travel Industry Economics by
Cover of the book Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems by
Cover of the book The Repressed Memory Epidemic by
Cover of the book MVT: A Most Valuable Theorem by
Cover of the book Forensic Memory by
Cover of the book Twin Peaks for Europe: State-of-the-Art Financial Supervisory Consolidation by
Cover of the book Responsible Innovation 2 by
Cover of the book Advanced Parallel Processing Technologies by
Cover of the book Image Analysis by
Cover of the book Design, User Experience, and Usability: Theory and Practice by
Cover of the book Handbook of Theory and Practice of Sustainable Development in Higher Education by
Cover of the book Product Information Management by
Cover of the book Thermal Energy Storage with Phase Change Materials by
Cover of the book Nineteenth-Century Illustration and the Digital by
Cover of the book Advances in Electrodermal Activity Processing with Applications for Mental Health by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy