Transconductance Thermal Noise Model For Mosfets

Nonfiction, Science & Nature, Technology, Electronics, Semiconductors
Cover of the book Transconductance Thermal Noise Model For Mosfets by Mike Peralta, Mike Peralta
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Mike Peralta ISBN: 9781476144047
Publisher: Mike Peralta Publication: June 19, 2012
Imprint: Smashwords Edition Language: English
Author: Mike Peralta
ISBN: 9781476144047
Publisher: Mike Peralta
Publication: June 19, 2012
Imprint: Smashwords Edition
Language: English

ABSTRACT

Transconductance Thermal Noise Model For MOSFETs

Accurate expressions for MOSFET channel thermal noise in terms of transconductances are derived for long channel MOSFETs in both the strong and weak inversion regions. The transconductance form also allows us to formulate a thermal noise model which includes moderate inversion.
Part of the transconductance expressions being presented here, namely (8kT/3)(gm+gmbs+gds), have been in use before in SPICE simulators but (to our knowledge) its derivation has never been rigorously derived from the first principles of MOSFET theory. This derivation and others will be presented.

It will also be shown that the general form of the transconductance thermal noise model for long channels, derived for both the saturated and non-saturated (triode) regions, are accurate and equivalent to the inversion charge thermal noise model.

Finally, the thermal noise expression derived for long channel MOSFETs will be extended to cover the short channel case by treating velocity saturation. The excess thermal noise factor due to the higher electric fields in short channels is also included.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

ABSTRACT

Transconductance Thermal Noise Model For MOSFETs

Accurate expressions for MOSFET channel thermal noise in terms of transconductances are derived for long channel MOSFETs in both the strong and weak inversion regions. The transconductance form also allows us to formulate a thermal noise model which includes moderate inversion.
Part of the transconductance expressions being presented here, namely (8kT/3)(gm+gmbs+gds), have been in use before in SPICE simulators but (to our knowledge) its derivation has never been rigorously derived from the first principles of MOSFET theory. This derivation and others will be presented.

It will also be shown that the general form of the transconductance thermal noise model for long channels, derived for both the saturated and non-saturated (triode) regions, are accurate and equivalent to the inversion charge thermal noise model.

Finally, the thermal noise expression derived for long channel MOSFETs will be extended to cover the short channel case by treating velocity saturation. The excess thermal noise factor due to the higher electric fields in short channels is also included.

More books from Semiconductors

Cover of the book PCB Currents by Mike Peralta
Cover of the book Nanostructured Semiconductors by Mike Peralta
Cover of the book Smart Glasses Just Got Smarter by Mike Peralta
Cover of the book Photovoltaic Solar Energy Conversion by Mike Peralta
Cover of the book Variation-Aware Advanced CMOS Devices and SRAM by Mike Peralta
Cover of the book The Source/Drain Engineering of Nanoscale Germanium-based MOS Devices by Mike Peralta
Cover of the book Modeling, Characterization and Production of Nanomaterials by Mike Peralta
Cover of the book Semiconductor Technologies in the Era of Electronics by Mike Peralta
Cover of the book Handbook of Nanoceramic and Nanocomposite Coatings and Materials by Mike Peralta
Cover of the book Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by Mike Peralta
Cover of the book Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps by Mike Peralta
Cover of the book Flexible Electronics by Mike Peralta
Cover of the book Advanced Nanomaterials and Their Applications in Renewable Energy by Mike Peralta
Cover of the book Organic Electronics in Sensors and Biotechnology by Mike Peralta
Cover of the book Nanostructures for Novel Therapy by Mike Peralta
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy