Uncertainty Quantification in Computational Fluid Dynamics

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Computers, Advanced Computing, Computer Science
Cover of the book Uncertainty Quantification in Computational Fluid Dynamics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319008851
Publisher: Springer International Publishing Publication: September 20, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319008851
Publisher: Springer International Publishing
Publication: September 20, 2013
Imprint: Springer
Language: English

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

More books from Springer International Publishing

Cover of the book Educational Media and Technology Yearbook by
Cover of the book Fusion Methodologies in Crisis Management by
Cover of the book Psychological and Social Measurement by
Cover of the book China and Africa by
Cover of the book Quantum Computational Number Theory by
Cover of the book Value Reasoning by
Cover of the book Morphology of Electrochemically and Chemically Deposited Metals by
Cover of the book The Economics of Addictive Behaviours Volume III by
Cover of the book Liquid Crystal Colloids by
Cover of the book The Ontology of Gods by
Cover of the book Emerging Technologies for STEAM Education by
Cover of the book Human-Computer Interaction. User Interface Design, Development and Multimodality by
Cover of the book Theory of Heavy-Fermion Compounds by
Cover of the book Security and Defence in Europe by
Cover of the book Perspectives on Pragmatics and Philosophy by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy