Unsupervised Information Extraction by Text Segmentation

Nonfiction, Computers, Database Management, General Computing
Cover of the book Unsupervised Information Extraction by Text Segmentation by Eli Cortez, Altigran S. da Silva, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Eli Cortez, Altigran S. da Silva ISBN: 9783319025971
Publisher: Springer International Publishing Publication: October 23, 2013
Imprint: Springer Language: English
Author: Eli Cortez, Altigran S. da Silva
ISBN: 9783319025971
Publisher: Springer International Publishing
Publication: October 23, 2013
Imprint: Springer
Language: English

A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely ONDUX, JUDIE and iForm.

ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. iForm applies the authors’ approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form.

All of these methods were evaluated considering different experimental datasets, which are used to perform a large set of experiments in order to validate the presented approach and methods. These experiments indicate that the proposed approach yields high quality results when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications. The findings will prove valuable to practitioners in helping them to understand the current state-of-the-art in unsupervised information extraction techniques, as well as to graduate and undergraduate students of web data management.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely ONDUX, JUDIE and iForm.

ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. iForm applies the authors’ approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form.

All of these methods were evaluated considering different experimental datasets, which are used to perform a large set of experiments in order to validate the presented approach and methods. These experiments indicate that the proposed approach yields high quality results when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications. The findings will prove valuable to practitioners in helping them to understand the current state-of-the-art in unsupervised information extraction techniques, as well as to graduate and undergraduate students of web data management.

More books from Springer International Publishing

Cover of the book The Roles of Remote Sensing in Nature Conservation by Eli Cortez, Altigran S. da Silva
Cover of the book Biomechatronics in Medical Rehabilitation by Eli Cortez, Altigran S. da Silva
Cover of the book Discrete Geometry and Symmetry by Eli Cortez, Altigran S. da Silva
Cover of the book State of the Art in Digital Media and Applications by Eli Cortez, Altigran S. da Silva
Cover of the book The Natural World and Science Education in the United States by Eli Cortez, Altigran S. da Silva
Cover of the book Key Issues in English for Specific Purposes in Higher Education by Eli Cortez, Altigran S. da Silva
Cover of the book Resources for Teaching Mindfulness by Eli Cortez, Altigran S. da Silva
Cover of the book Graph Drawing and Network Visualization by Eli Cortez, Altigran S. da Silva
Cover of the book The Distribution of Income and Wealth by Eli Cortez, Altigran S. da Silva
Cover of the book Single-Molecule Fluorescence Spectroscopy of the Folding of a Repeat Protein by Eli Cortez, Altigran S. da Silva
Cover of the book Modern Societies and National Identities by Eli Cortez, Altigran S. da Silva
Cover of the book Foodinformatics by Eli Cortez, Altigran S. da Silva
Cover of the book Advances in Computer Science for Engineering and Education II by Eli Cortez, Altigran S. da Silva
Cover of the book Lake Ecology in Kashmir, India by Eli Cortez, Altigran S. da Silva
Cover of the book Multiword Expressions Acquisition by Eli Cortez, Altigran S. da Silva
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy