Vortices and Nanostructured Superconductors

Nonfiction, Science & Nature, Technology, Superconductors & Superconductivity, Material Science
Cover of the book Vortices and Nanostructured Superconductors by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319593555
Publisher: Springer International Publishing Publication: July 19, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319593555
Publisher: Springer International Publishing
Publication: July 19, 2017
Imprint: Springer
Language: English

This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication.

In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field.  Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication.

In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researchers survey the most exciting and important recent developments in the field.  Topics covered include: the use of scanning Hall probe microscopy to visualize interactions of a single vortex with pinning centers; Magneto-Optical Imaging for investigating what vortex avalanches are, why they appear, and how they can be controlled; and the vortex interactions responsible for the second magnetization peak. Other chapters discuss nanoengineered pinning centers of vortices for improved current-carrying capabilities, current anisotropy in cryomagnetic devices in relation to the pinning landscape, and the new physics associated with the discovery of new superconducting materials with multi-component superconductivity. The book offers something for almost everybody interested in the field: from experimental techniques to visualize vortices and study their dynamics, to a state-of-the-art theoretical microscopic approach to multicomponent superconductivity.

More books from Springer International Publishing

Cover of the book Computational Intelligence by
Cover of the book Understanding and Analysis: The California Air Resources Board Forest Offset Protocol by
Cover of the book Model Checking Software by
Cover of the book Chemistry and Hygiene of Food Additives by
Cover of the book Dry Etching Technology for Semiconductors by
Cover of the book Computer Vision – ECCV 2018 by
Cover of the book Smart Cities by
Cover of the book Contextualizing Childhoods by
Cover of the book Technen: Elements of Recent History of Information Technologies with Epistemological Conclusions by
Cover of the book Energy Politics and Rural Development in Sub-Saharan Africa by
Cover of the book Natural Language Processing and Information Systems by
Cover of the book Universities as Agencies by
Cover of the book Plant Phenology as a Biomonitor for Climate Change in Germany by
Cover of the book Automation, Communication and Cybernetics in Science and Engineering 2013/2014 by
Cover of the book Rudolf Steiner by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy