Author: | ISBN: | 9781466604353 | |
Publisher: | IGI Global | Publication: | February 29, 2012 |
Imprint: | Information Science Reference | Language: | English |
Author: | |
ISBN: | 9781466604353 |
Publisher: | IGI Global |
Publication: | February 29, 2012 |
Imprint: | Information Science Reference |
Language: | English |
Inter-vehicle communication (IVC) systems based on wireless ad-hoc networks have the potential to provide increased automotive safety, to achieve smooth traffic flow on the roads, and to improve passenger convenience by providing information and entertainment. However, implementing IVC systems for widespread use also presents a number of technical obstacles. Wireless Technologies in Vehicular Ad Hoc Networks: Present and Future Challenges explores different models for inter-vehicular communication, in which vehicles are equipped with on-board computers that function as nodes in a wireless network. The book covers current theories and applications in physical, medium access, and network layers of IVC systems, exploring inter-vehicle ad-hoc routing protocols and the challenges of predicting vehicular movements, particularly inter-vehicular distance and relative velocity in highly dynamic and varied real-world scenarios.
Inter-vehicle communication (IVC) systems based on wireless ad-hoc networks have the potential to provide increased automotive safety, to achieve smooth traffic flow on the roads, and to improve passenger convenience by providing information and entertainment. However, implementing IVC systems for widespread use also presents a number of technical obstacles. Wireless Technologies in Vehicular Ad Hoc Networks: Present and Future Challenges explores different models for inter-vehicular communication, in which vehicles are equipped with on-board computers that function as nodes in a wireless network. The book covers current theories and applications in physical, medium access, and network layers of IVC systems, exploring inter-vehicle ad-hoc routing protocols and the challenges of predicting vehicular movements, particularly inter-vehicular distance and relative velocity in highly dynamic and varied real-world scenarios.