Non-Linear Mass Transfer and Hydrodynamic Stability

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical
Cover of the book Non-Linear Mass Transfer and Hydrodynamic Stability by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080537702
Publisher: Elsevier Science Publication: August 16, 2000
Imprint: Elsevier Science Language: English
Author:
ISBN: 9780080537702
Publisher: Elsevier Science
Publication: August 16, 2000
Imprint: Elsevier Science
Language: English

Surveyed in this book are the kinetics of non-linear mass transfer and its effects on hydrodynamic stability in systems with intensive interphase mass transfer, in electrochemical systems with high current density and in chemically reacting systems.
In Part 1 the non-linear mass transfer as a result of an intensive interphase mass transfer in the gas (liquid)-solid surface, gas-liquid and liquid-liquid systems is considered in the duffusion boundary layer approximation as well as in flat channel taking the longitudinal diffusion into account. The influence of the direction of the intensive interphase mass transfer on heat transfer and multi-component mass transfer is illustrated.
Part 2 discusses non-linear mass transfer in electrochemical systems with high current density using the examples of the anode dissolving of metals in the electrolyte flow and the electro-separation of metals out of concentrated solutions. The theory of the measured electrochemical treatment of metals and alloys, which is a method of wide practical use, has been elaborated on this basis.
In Part 3 the non-linear mass transfer in chemically reacting systems is considered in the cases of: non-linearity of the equations of the chemical reaction's kinetics and intensive interphase mass transfer or thermo-capillary effect due to chemical reactions. On this basis, the mechanisms and the macro-kinetics of the chemical transformations in the gas-liquid systems are discussed.
Part 4 is dedicated to the chemical reaction kinetics in stationary two phase systems at an arbitrary contact time between phases.
In Part 5 the effects of concentration gradients are considered in the approximations of the linear theory of the hydrodynamic stability of almost parallel flows.
In systems with intensive interphase mass transfer, the Marangoni effect could also be observed, beside the effect of non-linear mass transfer. A comparative analysis of both effects is made in this book.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Surveyed in this book are the kinetics of non-linear mass transfer and its effects on hydrodynamic stability in systems with intensive interphase mass transfer, in electrochemical systems with high current density and in chemically reacting systems.
In Part 1 the non-linear mass transfer as a result of an intensive interphase mass transfer in the gas (liquid)-solid surface, gas-liquid and liquid-liquid systems is considered in the duffusion boundary layer approximation as well as in flat channel taking the longitudinal diffusion into account. The influence of the direction of the intensive interphase mass transfer on heat transfer and multi-component mass transfer is illustrated.
Part 2 discusses non-linear mass transfer in electrochemical systems with high current density using the examples of the anode dissolving of metals in the electrolyte flow and the electro-separation of metals out of concentrated solutions. The theory of the measured electrochemical treatment of metals and alloys, which is a method of wide practical use, has been elaborated on this basis.
In Part 3 the non-linear mass transfer in chemically reacting systems is considered in the cases of: non-linearity of the equations of the chemical reaction's kinetics and intensive interphase mass transfer or thermo-capillary effect due to chemical reactions. On this basis, the mechanisms and the macro-kinetics of the chemical transformations in the gas-liquid systems are discussed.
Part 4 is dedicated to the chemical reaction kinetics in stationary two phase systems at an arbitrary contact time between phases.
In Part 5 the effects of concentration gradients are considered in the approximations of the linear theory of the hydrodynamic stability of almost parallel flows.
In systems with intensive interphase mass transfer, the Marangoni effect could also be observed, beside the effect of non-linear mass transfer. A comparative analysis of both effects is made in this book.

More books from Elsevier Science

Cover of the book ODE/PDE α-synuclein Models for Parkinson’s Disease by
Cover of the book The Catecholamines in Psychiatric and Neurologic Disorders by
Cover of the book Solid/Liquid Separation: Equipment Selection and Process Design by
Cover of the book The Alkaloids by
Cover of the book Advanced Composites in Bridge Construction and Repair by
Cover of the book Architecture and Patterns for IT Service Management, Resource Planning, and Governance by
Cover of the book Misleading DNA Evidence by
Cover of the book Introduction to Forestry and Natural Resources by
Cover of the book Side Reactions in Peptide Synthesis by
Cover of the book Haschek and Rousseaux's Handbook of Toxicologic Pathology by
Cover of the book Raptors in Human Landscapes by
Cover of the book Stochastic Dynamics. Modeling Solute Transport in Porous Media by
Cover of the book Your Solar Energy Home by
Cover of the book Arthropod Vector: Controller of Disease Transmission, Volume 1 by
Cover of the book Principles of Radiation Therapy by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy