Latent Semantic Indexing (LSI) - ein kurzer Überblick

ein kurzer Überblick

Business & Finance, Industries & Professions, Information Management
Cover of the book Latent Semantic Indexing (LSI) - ein kurzer Überblick by Irene Götz, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Irene Götz ISBN: 9783638252065
Publisher: GRIN Verlag Publication: February 7, 2004
Imprint: GRIN Verlag Language: German
Author: Irene Götz
ISBN: 9783638252065
Publisher: GRIN Verlag
Publication: February 7, 2004
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

More books from GRIN Verlag

Cover of the book Funktionen des Zivilisationsparadigmas von Samuel P. Huntington by Irene Götz
Cover of the book Hausa und Kiswahili - eine kontrastive Darstellung by Irene Götz
Cover of the book Gnosis - Welche Bedeutung kann oder muss der Gnosis zugetragen werden, in Anbetracht der heutigen Zeit und im Zusammenhang mit der Bibel? by Irene Götz
Cover of the book Roadmaps und die Reaktion auf Technologien, die außerhalb der Kernkompetenzen liegen by Irene Götz
Cover of the book Martin Luther by Irene Götz
Cover of the book Das Konzept des Gewährleistungsstaates by Irene Götz
Cover of the book Kennzahlensysteme zur benutzerfreundlichen Gestaltung von Patienteninformationssystemen: Ihr Weg zum passenden Krankenhaus by Irene Götz
Cover of the book Zusammenhänge zwischen Selbstkonzept, kausalen Attributionen und akademischen Leistungen by Irene Götz
Cover of the book Sind NGOs demokratisch legitimierbar? Eine Untersuchung am Beispiel von amnesty international by Irene Götz
Cover of the book Das kleine Mathelehrbuch für alle, die ihr Wissen wieder auffrischen wollen by Irene Götz
Cover of the book Francis Al?s' St. Fabiola. Wie wird eine Sammlung zum Kunstwerk? by Irene Götz
Cover of the book Die Kontinuität der Freiberufler-Gesellschaft mit Hilfe der Eigenverwaltung by Irene Götz
Cover of the book 'Stuttgart 21'. Studien zur Nachhaltigkeit des neuen Durchgangsbahnhofs in Stuttgart by Irene Götz
Cover of the book Was ist bei einer vorzeitigen Beendigung eines Berufsausbildungsverhältnisses vom Auszubildenden und vom Ausbilder zu beachten by Irene Götz
Cover of the book Defining Surrealism: Relations between Nadja, Photography and the Surrealist Movement by Irene Götz
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy