Latent Semantic Indexing (LSI) - ein kurzer Überblick

ein kurzer Überblick

Business & Finance, Industries & Professions, Information Management
Cover of the book Latent Semantic Indexing (LSI) - ein kurzer Überblick by Irene Götz, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Irene Götz ISBN: 9783638252065
Publisher: GRIN Verlag Publication: February 7, 2004
Imprint: GRIN Verlag Language: German
Author: Irene Götz
ISBN: 9783638252065
Publisher: GRIN Verlag
Publication: February 7, 2004
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2001 im Fachbereich Informationswissenschaften, Informationsmanagement, Note: 2,0, Universität Hildesheim (Stiftung) (Angewandte Sprachwissenschaft), Veranstaltung: Virtuelles Hauptseminar, Sprache: Deutsch, Abstract: Bei dieser Retrieval-Methode werden in einem n -dimensionalen Raum A nfragen und Dokumente in Form von Vektoren repräsentiert, wobei jeder Suchbegriff eine Dimension darstellt. Die gefundenen Dokumente werden aufgrund ihrer Deskriptoren als Vektoren in den Raum eingeordnet, ihre Position im R aum bezeichnet ihre Relevanz. Messbar wird die Ähnlichkeit zwischen Anfrage und Dokument anhand des Cosinus- Winkels zwischen Anfrage- und Dokumentvektor: Je kleiner das Cosinus-Maß des Winkels zwischen Anfrage und Dokument, desto größer die Ähnlichkeit zwischen Dokument und Anfrage. Die Vektor-Retrieval-Methode ist weit verbreitet, hat jedoch den Nachteil, dass sie Terme als voneinander unabhängig betrachtet. Wie bei den anderen 'klassischen' Retrieval-Techniken (Boolsches Retrieval, probabilistisches Retrieval, vgl. http://www.iud.fh-darmstadt.de/iud/wwwmeth/LV/ss97/wpai/grpTexte/textgr2.htm#Heading26) werden exakte Übereinstimmungen zwischen in der Anfrage enthaltenen und in den Dokumenten verwendeten Termen, unabhängig vom Kontext, in dem sie gebraucht werden gesucht. Diese Technik ist in der Hinsicht problematisch, dass es z.B. für ein und dieselbe Sache oft verschiedene Bezeichnungen gibt, und somit relevante Dokumente oft nicht ausgegeben werden, weil im Dokument eine andere Bezeichnung als in der Anfrage verwendet wurde. Hier setzt Latent Semantic Indexing an: Dokumente werden aufgrund von Wort-Assoziationen und kontextue llen Zusammenhängen indexiert, sodass auch relevante Dokumente, die mit der Anfrage keine Wörter gemeinsam haben gefunden werden.

More books from GRIN Verlag

Cover of the book Reflexionen über die Existenz des Teufels nach dem Zweiten Vatikanischen Konzil by Irene Götz
Cover of the book Die fachgerechte Reinigung und Pflege eines Glaskeramikkochfeldes (Unterweisung Hauswirtschafter / -in) by Irene Götz
Cover of the book Mütter in der Familie - Lebenssituation, Erziehungsaufgaben, Wünsche by Irene Götz
Cover of the book Zum Problemkreis der gesetzeskonformen Auslegung und der Rechtsfortbildung und deren Abgrenzung by Irene Götz
Cover of the book Die Jugendkultur Techno by Irene Götz
Cover of the book A Novel Approach To Enhance The Performance Of Cloud Computing File System Using Load Balancing Algorithm by Irene Götz
Cover of the book Nation ohne Staat - Die Teilungen Polens als Voraussetzung für die Modernisierungshemmnisse by Irene Götz
Cover of the book How to work with a text in Secondary Schools by Irene Götz
Cover of the book Kriegserinnerungen und Teilöffentlichkeiten. Nationale Konflikte im Lemberg der Zwischenkriegszeit by Irene Götz
Cover of the book Untersuchung zur Haltungs- und Gleichgewichtsregulation bei Patienten mit Cochlea Implantat by Irene Götz
Cover of the book Der Herero- und Namaaufstand unter besonderer Berücksichtigung der Völkermordthese by Irene Götz
Cover of the book Klinische Psychologie / Major Depression by Irene Götz
Cover of the book Sprechkunst von Drach bis Ritter by Irene Götz
Cover of the book Weblogs als neues Kommunikationsmedium in der Bildungswissenschaft by Irene Götz
Cover of the book Der Held in Gogols 'Die toten Seelen': Pavel Ivanovi Cicikov by Irene Götz
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy